Saturday, October 8, 2016

"Dear Silicon Valley: Forget Flying Cars, Give Us Economic Growth"

A repost from MIT's Technology Review, June 21:
Companies taking advantage of amazing new digital technologies dominate our list of 50 Smartest Companies. But despite impressive advances in artificial intelligence and automation, the economy remains in a troubling slowdown.

The headquarters of Alphabet’s X labs in Mountain View, California, is easy to miss. A simple yellow “X” marks the visitors’ entrance to the sprawling building that was once a large indoor shopping mall. But on a weekday in late May, the parking lot is bustling, filled with employees and visitors, as X’s pod-like driverless cars buzz about. Inside, various teams of mostly young people—the company won’t say just how many people are employed at the facility—work on “moon shots,” which Alphabet defines as transformative technologies that could have a huge impact on the world. Besides the driverless cars, publicly identified projects at X include Loon, an effort to use high-altitude balloons to deliver the Internet to remote regions of the world; Wing, which is building self-navigating drones for delivering stuff; and Makani, which is developing odd flying wind turbines tethered to a ground station.

Inside, skateboards, bikes, and scooters are everywhere, as are machine shops and expensive analytical instruments. This postmodern industrial research center—part design studio, part tech incubator, and part science lab—represents Silicon Valley at its best: ambitious, creative, and fixated on radical new technologies. And while X may have been widely ridiculed for its failure to convince the world that people needed its Google Glass, its remarkable progress with driverless cars—which are common enough on the surrounding streets of Mountain View to attract little notice—could make us forget such missteps. But Alphabet’s X, with its heavy investment in resources and people, also reminds us just how difficult it is to commercialize radical new technologies and how few companies can afford such efforts.

Given impressive advances in artificial intelligence, smart robots, and driverless cars, it’s easy to become convinced that we are on the verge of a new technological age. But the troubling reality is that today’s advances are having a far from impressive impact on overall economic growth.

Facebook, Twitter, and other digital technologies undoubtedly bring great value to many people, but those benefits are not translating into a substantial economic boost. If you think Silicon Valley is going to fuel growing prosperity, you are likely to be disappointed—or you’d better be patient. While the high-tech industry creates impressive wealth for itself, much of the country is mired in a sluggish economy. It might be that driverless cars and other uses of advanced AI will eventually change that, but for now these technologies are not radically transforming the economy.

Economists who study productivity, a measure of output per worker, tell us that from around 1994 to 2004 the Internet and advances in computation helped fuel rapid growth. But during the past decade we slid back to far slower improvements in productivity, hence stagnant economic growth. And the phenomenon is showing up in advanced economies around the world, with countries such as Italy and the U.K. particularly hard hit. Many people feel the results as flat or declining wages, and the consequences have almost certainly contributed to deep political unrest in many countries. According to Chad Syverson, an economist at the University of Chicago Booth School of Business, U.S. productivity grew at a mere 1.3 percent per year from 2005 to 2015, far less than the 2.8 percent annual growth rate during the decade earlier. Syverson calculates that had the slowdown not occurred, the gross domestic product would have been $2.7 trillion higher by 2015—about $8,400 for every American.

No one really knows the reason for the slowdown. Perhaps we have run out of ideas that match the great inventions of the 20th century in economic importance (see “Tech Slowdown Threatens the American Dream”). Or perhaps we haven’t done a good job measuring how recent advances in digital technologies and social media have affected the economy: if Facebook, YouTube, and Twitter are making us more productive, we don’t know because we can’t tally the true value of this free stuff. That’s possibly true, but even if it is, it doesn’t account for anything close to the measured slowdown in overall productivity growth. A more plausible explanation: it is proving difficult to convert recently developed digital technologies into meaningful changes in the economy’s largest sectors, such as health care, manufacturing, and transportation.

Even some of the strongest proponents of the idea that automation and digital technologies are going to revolutionize our economy are dismayed by the slow progress in implementing these advances. Erik Brynjolfsson, a professor at MIT’s Sloan School of Management and coauthor of The Second Machine Age, says the process has been “disappointingly difficult.” He says that while there has been “a lot of progress in the underlying technologies” in the last few years, companies are finding that making the necessary changes is expensive and takes time. “It’s not trivial. It’s not like flipping a switch,” says Brynjolfsson. “And companies are struggling.”

Michael Mandel, an economist at the Progressive Policy Institute in Washington, D.C., says the productivity slowdown is occurring in what he calls the physical industries, including manufacturing and health care. Such industries, which he estimates make up 80 percent of the national economy, account for only 35 percent of investments in information technology and their productivity reflects that, growing at only 0.9 percent annually. Meanwhile, productivity is growing by 2.8 percent a year in what Mandel calls digital industries, which include finance and business services. 

If that is what is going on, it leaves plenty of room for optimism. “As we learn to apply the new technologies,” says Mandel, “we could see growth in productivity speed up again.” Syverson agrees that while the IT gains of the late 1990s and early 2000s seem played out, he can “imagine a second wave.”

A material world
Our list of 50 Smartest Companies includes some that have used new digital technologies to destroy existing industries: Amazon, with its growing dominance of retail trade, and Facebook, with its inroads into the media. But it also includes examples of mature companies, like Bosch, a large German manufacturer using IT to meet its business challenges (we go to Allgäu, Germany, to visit a “factory of the future”). And it includes those pushing the limits of new digital technologies, as Baidu is doing in its effort to create autonomous cars and Alphabet with its remarkable advances in artificial intelligence.

It’s a much different list from our first one, published in 2010 (it was then called the 50 Most Innovative Companies). A number of energy and materials companies on the 2010 list have failed or have become far less ambitious, or have simply made little progress in meeting their objectives. There are numerous reasons for the lack of success, but it is worth wondering whether we have lost the patience required to nurture innovation in industries that by their nature require years and often hundreds of millions of dollars to develop a commercial product.

The reality is that new digital technologies, even such impressive ones as artificial intelligence, won’t by themselves soon revive the economy, never mind solve problems like climate change. “The fact that you have cheaper computers doesn’t allow you to store energy,” says David Autor, an economist at MIT. “You can have all the computing power you want in your Tesla. It doesn’t solve the problem that the batteries are expensive, heavy, and have low energy density.” We need to solve key “bottlenecks” in such sectors as energy, education, and health care to radically improve productivity, says Autor. For example, he says, the lack of cheap energy storage is holding back deployment of renewable power and limiting the attractiveness of electric vehicles. Developing inexpensive, practical energy storage, he suggests, “would have enormous productivity importance.”...MUCH MORE
Previously:
Technology Review's "50 Smartest Companies 2016"
Our readers, beyond being perceptive, articulate and good looking, are probably familiar with most of the top twenty or so names on TR's list.
What surprised me when I first saw this year's compendium was the bottom half....
2015
Whatever Happened To The Class Of 2015 Breakthrough Technologies?
Technology Review's Breakthrough Technologies 2015
2014
The 50 Smartest Companies of 2014 (Apple's not one of them)
2013
MIT Technology Review's 50 Disruptive Companies 2013
2012
MIT's Technology Review: 50 Most Innovative Companies
2011
MIT's Technology Review's 50 Most Innovative Companies
2010
Technology Review's 50 Most Innovative Companies (GE; AMSC; FSLR; DD)